Cross-Covariance-based Features for Speech Classification in Film Audio

نویسندگان

  • Matthew Benatan
  • Kia Ng
چکیده

As multimedia becomes the dominant form of entertainment through an ever increasing range of digital formats, there has been a growing interest in obtaining information from entertainment media. Speech is one of the core resources in multimedia, providing a foundation for the extraction of semantic information. Thus, detecting speech is a critical first step for speech-based information retrieval systems. This work focuses on speech detection in one of the dominant forms of entertainment media: feature films. A novel approach for voice activity detection (VAD) in film audio is proposed. The approach uses correlation to analyze associations of Mel Frequency Cepstral Coefficient (MFCC) pairs in speech and non-speech data. This information then drives feature selection for the creation of MFCC crosscovariance feature vectors (MFCC-CCs) which are used to train a random forest classifier to solve a binary speech/non-speech classification problem on audio data from entertainment media. The classifier performance is evaluated on a number of test sets and achieves a classification accuracy of up to 94%. The approach is also compared with state of the art and contemporary VAD algorithms, and demonstrates competitive results. Keywordsvoice activity detection; speech detection; binary classification; film audio; entertainment media

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain

This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Speech and Crosstalk Detection in Multi - Channel Audio Stuart

––The analysis of scenarios in which a number of microphones record the activity of speakers, such as in a round-table meeting, presents a number of computational challenges. For example, if each participant wears a microphone, it can receive speech from both the microphone's wearer (local speech) and from other participants (crosstalk). The recorded audio can be broadly classified in four ways...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015